University of Manchester studied Metal-Organic Framework (HKUST-1) for CO2 capture from flue gases

In the recent study by The University of Manchester, HKUST-1, one of the extensively studied Metal-Organic Framework (MOF) for gas separation, was evaluated as a model material for CO2 capture from flue gas stream.
By: Manchester University /Surface Measurement Systems
 
 
graphical_abstract
graphical_abstract
Aug. 26, 2015 - PRLog -- Flue gases contain percentage of CO2 of 5-15%, N2 70-75%, and water vapour of 5-7%. HKUST-1 behaviour was studied with these gases at conditions similar to those of flue gas emission at temperature of 50-75˚C. The synthesis was first improved in terms of gaining high production yield and suppressing the by-product formation. According to Nadeen Al-Janabi from The University of Manchester, “The synthesised samples showed good CO2 capacity in comparison to N2. While, the hydrothermal stability test (water vapour adsorption) showed that HKUST-1 in its current form is hydrothermally instable neither at high temperature nor at room temperature. The outcome is to modify the structure of HKUST-1 to enhance its hydrothermal stability otherwise it cannot withstand humid flow such as that of flue gas. To assess the moisture stability of HKUST-1, the water vapour adsorption was measured using DVS 1 “Surface Measurement Systems”.

The study was performed by a group from the School of Chemical Engineering and Analytical Sciences, The University of Manchester and Department of Chemical Engineering, University of Bath. It was presented at the 13th International Conference of Carbon Dioxide Utilisation in Singapore and has won several awards and recognition. A second paper in connection to this study is about to be released soon.

ead full article on “Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases” Authors: Nadeen Al-Janabi, Patrick Hill, Laura Torrente-Murciano, Arthur Garforth, Patricia Gorgojo, Flor Siperstein, Xiaolei Fan, Chemical Engineering Journal 281 (2015) 669–677.

http://surfacemeasurementsystems.com/newsroom/press-relea...

End
Source:Manchester University /Surface Measurement Systems
Email:***@surfacemeasurementsystems.com Email Verified
Tags:HKUST-1, Mof, Dvs
Industry:Engineering
Subject:Reports
Account Email Address Verified     Account Phone Number Verified     Disclaimer     Report Abuse
Surface Measurement Systems Ltd News
Trending
Most Viewed
Daily News



Like PRLog?
9K2K1K
Click to Share