Follow on Google News News By Tag Industry News News By Location Country(s) Industry News
Follow on Google News | Universal Linear Processing of Spatially Incoherent Light Through Diffractive Optical NetworksBy: UCLA ITA In a new article published in Light: Science & Applications, a team of researchers, led by Professor Aydogan Ozcan from the Electrical and Computer Engineering Department of the University of California, Los Angeles (UCLA), USA, has developed methods for designing all-optical universal linear processors of spatially incoherent light. Such processors comprise a set of structurally engineered surfaces and exploit successive diffraction of light by these structured surfaces to perform a desired linear transformation of the input light field without using external digital computing power. UCLA researchers reported deep learning-based design methods to perform any arbitrary linear transformation using the optical intensity of spatially incoherent light. These diffractive optical processors, once fabricated using, for example, lithography or 3D-printing techniques, can perform an arbitrarily- These findings have broad implications in numerous fields, including all-optical information processing and visual computing with spatially and temporally incoherent light, as encountered in natural scenes. Additionally, this framework holds significant potential for applications in computational microscopy and incoherent imaging with spatially varying engineered point spread functions (PSFs). The authors of this work are Md Sadman Sakib Rahman, Xilin Yang, Jingxi Li, Bijie Bai and Aydogan Ozcan of UCLA Samueli School of Engineering. The researchers acknowledge the funding of the US Department of Energy (DOE). Original: https://doi.org/ End
Account Email Address Account Phone Number Disclaimer Report Abuse
|
|