Follow on Google News News By Tag Industry News News By Location Country(s) Industry News
Follow on Google News | Indoor Localization: Key Aspects of Various Indoor Localization TechnologiesBy: Pigeon Srisys This post discusses key aspects of each indoor localization technique and presents technological aspects which support in successfully implementing an indoor localization system. Making Indoor Localization Possible: Wireless Technologies WiFi Used primarily for connecting different devices to the internet and provide networking capabilities to the user, WiFi is one of the most popular wireless technologies in the 21st century. As most devices such as Smartphones, tablets and personal computers are enabled for WiFi, it makes this wireless technology cost-effective as well as ubiquitous. Bluetooth Usage of Bluetooth for connecting devices and sharing data has been a common practice at indoor environments as it allows for hassle-free exchange of information within limited spaces. However, with the introduction of Bluetooth Low Energy (BLE), the data rate has improved in addition to the coverage range which is now around 70-90 meters. Zigbee Being the latest in entrant in wireless technologies which power indoor localization, Zigbee is widely used in home automation and to crate personal area networks. Zigbee's range is around 10 – 20 meters, hence it is not effective in large indoor environments. Radio Frequency Identification Device (RFID) This technology uses electromagnetic radio waves for transferring or storing data in large indoor environments. RFID systems can operate at wide distances and are therefore quite effective indoor localization system. Ultra-wide Band (UWB) Despite its use as a short-range communication system, UWB has gained significant usage as an indoor application since other signals cannot interfere with its transmission. UWB signals can penetrate a wide variety of materials including walls. Visible Light Light Emitting Diodes (LED) acts as Beacons to transmit signal and data which is then picked up by receivers for indoor localization. An emerging technology, Visible Light Communication (VLC) uses certain ranges of visible light for high-speed data transfer. Indoor Localization: Received Signal Strength Indicator (RSSI) This is one of the simplest and hence widely used approach for indoor localization. While RSSI is easy to install & implement, cost-effective, and can be used in combination with multiple other technologies, it is prone to lower localization accuracy and environmental noise. RSSI requires fingerprinting for indoor localization accuracy. Channel State Information (CSI) CSI provides better multipath information, more stable measurements, and higher localization accuracy when compared to RSSI. However, despite its robust compatibility and good quality output, CSI is yet to gain popularity. It's availability also is a major concern. Fingerprinting/ This technology requires an environmental survey to obtain fingerprints or features of the environment where localization has to be installed. While Fingerprinting/ Angle of Arrival (AoA) This approach uses antennae arrays to estimate the angle at which the signal intrudes on the receiver, by exploiting and calculating the time difference of arrival. The prime advantage of AoA is that user location can be estimated in both 2D and 3D environments with the right infrastructure. AoA provides high location accuracy but requires complex hardware and components, apart from the risk of decreasing performance with increase in distance between transmitter and receiver. Return Time of Flight (RToF) This technology measures the transmitter- While RToF provides high accuracy and does not require any fingerprinting, it requires clock synchronization, and there could be processing delay for shorter range measurements. Source http://pigeon.srisys.com/ End
|